CD-ROM

In computer science, acronym for compact disc read-only memory, a rigid plastic disk that stores a large amount of data through the use of laser optics technology. Because they store data optically, CD-ROMs have a much higher memory capacity than computer disks that store data magnetically. However, CD-ROM drives, the devices used to access information on CD-ROMs, can only read information from the disc, not write to it.

The underside of the plastic CD-ROM disk is coated with a very thin layer of aluminum that reflects light. Data is written to the CD-ROM by burning microscopic pits into the reflective surface of the disk with a powerful laser. The data is in digital form, with pits representing a value of 1 and flat spots, called land, representing a value of 0. Once data is written to a CD-ROM, it cannot be erased or changed, and this is the reason it is termed read-only memory. Data is read from a CD-ROM with a low power laser contained in the drive that bounces light—usually infrared—off of the reflective surface of the disk and back to a photodetector. The pits in the reflective layer of the disk scatter light, while the land portions of the disk reflect the laser light efficiently to the photodetector. The photodetector then converts these light and dark spots to electrical impulses corresponding to 1s and 0s. Electronics and software interpret this data and accurately access the information contained on the CD-ROM.
CD-ROMs can store large amounts of data and so are popular for storing databases and multimedia material. The most common format of CD-ROM holds approximately 630 megabytes (see Byte). By comparison, a regular floppy disk holds approximately 1.44 megabytes.
CD-ROMs and Audio CDs are almost exactly alike in structure and data format. The difference between the two lies in the device used to read the data—either a CD-ROM player or a compact disc (CD) player. CD-ROM players are used almost exclusively as computer components or peripherals. They may be either internal (indicating they fit into a computer’s housing) or external (indicating they have their own housing and are connected to the computer via an external port).
Both types of players spin the discs to access data as they read the data with a laser device. CD-ROM players only spin the disc to access a sector of data and copy it into main memory for use by the computer, while audio CDs spin throughout the time that the audio recording is read out, directly feeding the signal to an audio amplifier.
The most important distinguishing feature among CD-ROM players is their speed, which indicates how fast they can read data from the disc. A single-speed CD-ROM player reads 150,000 bytes of data per second. Double-speed (2X), triple-speed (3X), quadruple-speed (4X), six-times speed (6X), and eight-times speed (8x) CD-ROM players are also widely available.
Other important characteristics of CD-ROM players are seek time and data transfer rate. The seek time (also called the access time) measures how long it takes for the laser to access a particular segment of data. A typical CD-ROM takes about a third of a second to access data, as compared to a typical hard drive, which takes about 10 milliseconds (thousandths of a second) to access data. The data transfer rate measures how quickly data is transferred from the disk media to the computer’s main memory.
The computer industry also manufactures blank, recordable compact discs, called CD-Rs (compact disc-recordables), that users can record data onto for one-time, permanent storage using CD-R drives. Compact disc-rewriteables (CD-RWs) are similar to CD-Rs, but can be erased and rewritten multiple times. Another technology that allows the user to write to a compact disc is the magneto-optical (MO) disk, which combines magnetic and optical data storage. Users can record, erase, and save data to these disks any number of times using special MO drives.

Leave a Reply